两个重要极限及相关推导极限公式

两个重要极限: ① lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x

两个重要极限:
lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x \to 0}\frac{\sin x}{x} = 1 x0limxsinx=1
lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty}(1 + \frac{1}{x})^x = e xlim(1+x1)x=e

关于重要极限①的推导极限可以参考: 无穷小的等价代换

关于重要极限②的由来可以参考:自然常数e与重要极限

由重要极限②可以推导出:
lim ⁡ x → ∞ ( 1 + 1 x ) x ⇒ lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim_{x \to \infty}(1 + \frac{1}{x})^x \Rightarrow \lim_{x \to 0}(1 + x)^{\frac{1}{x}} = e xlim(1+x1)xx0lim(1+x)x1=e

重要极限②的例题
例:求 lim ⁡ x → ∞ ( 1 + 2 x + 3 ) x \lim_{x \to \infty} (1 + \frac{2}{x + 3})^x limx(1+x+32)x
解:
lim ⁡ x → ∞ ( 1 + 2 x + 3 ) x \lim_{x \to \infty} (1 + \frac{2}{x + 3})^x xlim(1+x+32)x
= lim ⁡ x → ∞ ( 1 + 1 x + 3 2 ) ( x + 3 2 ) ⋅ 2 − 3 = \lim_{x \to \infty} (1 + \frac{1}{\frac{x + 3}{2}})^{(\frac{x+3}{2})·2 - 3} =xlim(1+2x+31)(2x+3)23
= lim ⁡ x → ∞ ( 1 + 1 x + 3 2 ) x + 3 2 ⋅ 2 ⋅ ( 1 + 1 x + 3 2 ) − 3 = \lim_{x \to \infty} (1 + \frac{1}{\frac{x + 3}{2}})^{\frac{x+3}{2}·2} ·(1 + \frac{1}{\frac{x + 3}{2}})^{-3} =xlim(1+2x+31)2x+32(1+2x+31)3
= lim ⁡ x → ∞ ( 1 + 1 x + 3 2 ) x + 3 2 ⋅ 2 =\lim_{x \to \infty} (1 + \frac{1}{\frac{x + 3}{2}})^{\frac{x+3}{2}·2} =xlim(1+2x+31)2x+32
= e 2 = e^2 =e2

关于重要极限②,还有一个变体例题,很容易迷惑人,但实际上并不是用重要极限的方法来做
例:求 lim ⁡ x → ∞ ( 1 + 2 x ) 1 x \lim_{x \to \infty}(1+2x)^{\frac{1}{x}} xlim(1+2x)x1
解:
( 1 + 2 x ) 1 x = e ln ⁡ ( 1 + 2 x ) 1 x = e ln ⁡ ( 1 + 2 x ) x (1+2x)^{\frac{1}{x}} = e^{\ln(1+2x)^{\frac{1}{x}}} = e^{\frac{\ln (1+2x)}{x}} (1+2x)x1=eln(1+2x)x1=exln(1+2x)
所以:
lim ⁡ x → ∞ ( 1 + 2 x ) 1 x = lim ⁡ x → ∞ e ln ⁡ ( 1 + 2 x ) x = e lim ⁡ x → ∞ ln ⁡ ( 1 + 2 x ) x \lim_{x \to \infty}(1+2x)^{\frac{1}{x}} = \lim_{x \to \infty}e^{\frac{\ln (1+2x)}{x}} = e^{\lim_{x \to \infty} \frac{\ln (1+2x)}{x}} xlim(1+2x)x1=xlimexln(1+2x)=elimxxln(1+2x)
应用洛必达法则,得:
e lim ⁡ x → ∞ ln ⁡ ( 1 + 2 x ) x = e lim ⁡ x → ∞ 2 1 + 2 x = e 0 = 1 e^{\lim_{x \to \infty} \frac{\ln (1+2x)}{x}} = e^{\lim_{x \to \infty} \frac{2}{1+2x}} = e^0 = 1 elimxxln(1+2x)=elimx1+2x2=e0=1

知秋君
上一篇 2024-07-12 21:36
下一篇 2024-07-12 21:02

相关推荐