keras模型训练

MLK,即Machine Learning Knowledge,本专栏在于对机器学习的重点知识做一次梳理,便于日后温习,这次主要讲下Keras 模型的调参。 ? 前情回顾 上一篇文章讲解了如何简易入门Keras,大致给出了一个深度学习模型,但对于模型如何调参就没有太过于深入讲解,今天继续写一篇文章来整理下 Keras 深度学习模型的调参教程,希望可以对大家有所帮助。 00-


640?wx_fmt=png

MLK,即Machine Learning Knowledge,本专栏在于对机器学习的重点知识做一次梳理,便于日后温习,这次主要讲下Keras 模型的调参。


? 前情回顾


上一篇文章讲解了如何简易入门Keras,大致给出了一个深度学习模型,但对于模型如何调参就没有太过于深入讲解,今天继续写一篇文章来整理下 Keras 深度学习模型的调参教程,希望可以对大家有所帮助。


00- 初始化一个NN模型

我们还是使用 MNIST 数据集,这一次训练和测试数据的样本量都一样,都是10000。

# 导入相关库
import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense,Dropout,Activation
from keras.optimizers import SGD,Adam
from keras.utils import np_utils
from keras.datasets import mnist

# 封装数据读取及预处理的代码
def load_data():
(x_train,y_train),(x_test,y_test)=mnist.load_data()
number=10000
x_train=x_train[0:number]
y_train=y_train[0:number]
x_train=x_train.reshape(number,28*28)
x_test=x_test.reshape(x_test.shape[0],28*28)
x_train=x_train.astype('float32')
x_test=x_test.astype('float32')
y_train=np_utils.to_categorical(y_train,10)
y_test=np_utils.to_categorical(y_test,10)
x_train=x_train
x_test=x_test
x_train=x_train/255
x_test=x_test/255
return (x_train,y_train),(x_test,y_test)

# 调用方法
(x_train,y_train),(x_test,y_test)=load_data()
print(x_train.shape)
print(x_test.shape)

'''
随便初始化一个NN模型
'''
model=Sequential()
model.add(Dense(input_dim=28*28,units=633,activation='sigmoid'))
model.add(Dense(
知秋君
上一篇 2024-07-12 16:02
下一篇 2024-07-12 15:36

相关推荐