岭回归解析解

一、一般线性回归遇到的问题 在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在: 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量 时,最小二乘回归会有较小的方差 时,容易产生过拟合 时,最小二乘回归得不到有意义的结果

一、一般线性回归遇到的问题

    在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在:

  • 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量
    • 时,最小二乘回归会有较小的方差
    • 时,容易产生过拟合
    • 时,最小二乘回归得不到有意义的结果
  • 模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征选择。

以上的这些问题,主要就是表现在模型的方差和偏差问题上,这样的关系可以通过下图说明:


(摘自:机器学习实战)

方差指的是模型之间的差异,而偏差指的是模型预测值和数据之间的差异。我们需要找到方差和偏差的折中。

二、岭回归的概念

    在进行特征选择时,一般有三种方式:

  • 子集选择
  • 收缩方式(Shrinkage method),又称为正则化(Regularization)。主要包括岭回归个lasso回归。
  • 维数缩减

    岭回归(Ridge Regression)是在平方误差的基础上增加正则项

,

通过确定的值可以使得在方差和偏差之间达到平衡:随着的增大,模型方差减小而偏差增大。

    对求导,结果为


令其为0,可求得的值:


三、实验的过程

    我们去探讨一下取不同的对整个模型的影响。


MATLAB代码

主函数

%% 岭回归(Ridge Regression)

%导入数据
data = load('abalone.txt');
[m,n] = size(data);

dataX = data(:,1:8);%特征
dataY = data(:,9);%标签

%标准化
yMeans = mean(dataY);
for i = 1:m
    yMat(i,:) = dataY(i,:)-yMeans;
end

xMeans = mean(dataX);
xVars = var(dataX);
for i = 1:m
    xMat(i,:) = (dataX(i,:) - xMeans)./xVars;
end

% 运算30次
testNum = 30;
weights = zeros(testNum, n-1);
for i = 1:testNum
    w = ridgeRegression(xMat, yMat, exp(i-10));
    weights(i,:) = w';
end

% 画出随着参数lam
hold on
axis([-9 20 -1.0 2.5]);
xlabel log(lam);
ylabel weights;
for i = 1:n-1
    x = -9:20;
    y(1,:) = weights(:,i)';
    plot(x,y);
end


岭回归求回归系数的函数

function [ w ] = ridgeRegression( x, y, lam )
    xTx = x'*x;
    [m,n] = size(xTx);
    temp = xTx + eye(m,n)*lam;
    if det(temp) == 0
        disp('This matrix is singular, cannot do inverse');
    end
    w = temp^(-1)*x'*y;
end


知秋君
上一篇 2024-07-19 16:48
下一篇 2024-07-19 16:12

相关推荐