基于最小均数四分法 (LMF) 和最小均方 (LMS) 算法进行系统识别(Matlab代码实现)

👨‍🎓个人主页:研学社的博客 💥💥💞💞欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,

 👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

在本文中,在非高斯噪声环境中比较最小均方(LMS)和最小均方(LMF)算法,以执行系统识别任务。众所周知,LMF算法在非高斯环境中优于LMS算法,在此实现中可以看到相同的结果。此外,还编程了用于添加白色均匀噪声的定制功能。

📚2 运行结果

 部分代码:

N = 1e4;    % Number of samples
Bits = 2;      % For PSK modulation    
SNR = 10;      % Noise level

% *Monte Carlo simulations*

% h = [0.9 0.2 0.5 -0.7];         % Plant1 impulse response
% h = [-2:1:2];                   % Plant2 impulse response
h = randn(1,5);                   % Random system

runs=100; 
NWDs = 0;
NWDf = 0;
temp3 = 0;
temp4 = 0;
for run = 1:runs % Monte Carlo simulations
% h = randn(1,5);
data = randi([0 (2^Bits)-1],1,N);            % Random index for input data
x = real(pskmod(data,2^Bits));    % Phase shit keying (PSK) modulation
r = filter(h,1,x);              % Input passed trought system(h)
d = awun(r, SNR);               % Addition of white Uniform noise of decined SNR
% d = awgn(r, SNR);               % Addition of white Gaussian noise of decined SNR

% *LMS parameter*
etas = 1e-2;                    % Learning rate for LMS
Wlms = zeros(size(h));          % Initial weights of LMS
Us = zeros(1,length(h));         % Input frame length of LMS

% *LMF parameter*
etaf = 1e-2;                    % Learning rate for LMF
Wlmf = zeros(size(h));          % Initial weights of LMF
Uf = zeros(1,length(h));         % Input frame length of LMF

for n = 1 : N
                  
        % *LMS*
        Us(1,2:end) = Us(1,1:end-1);  % Shifting of frame window
        Us(1,1) = x(n);               % Input of LMS
        
        ys = (Wlms)*Us';                % Output of LMS                           
        es = d(n) - ys;                 % Instantaneous error of LMS 
        Wlms = Wlms +  etas * es * Us;  % Weight update rule of LMS

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

@article{Khan2017FLMFFL,
  title={FLMF: Fractional least mean fourth algorithm for channel estimation in non-Gaussian environment},
  author={Shujaat Khan and Naveed Ahmed and Muhammad Ammar Malik and Imran Naseem and Roberto Togneri and Mohammed Bennamoun},
  journal={2017 International Conference on Information and Communication Technology Convergence (ICTC)},
  year={2017},
  pages={466-470}
 

🌈4 Matlab代码实现

知秋君
上一篇 2024-07-28 22:48
下一篇 2024-07-28 22:12

相关推荐